Published in

Elsevier, Bioorganic and Medicinal Chemistry, 17(13), p. 5240-5252

DOI: 10.1016/j.bmc.2005.05.065

Links

Tools

Export citation

Search in Google Scholar

Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimetic α,β-unsaturated esters

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The proteolytic processing of polyproteins by the 3CL protease of severe acute respiratory syndrome coronavirus is essential for the viral propagation. A series of tripeptide alpha,beta-unsaturated esters and ketomethylene isosteres, including AG7088, are synthesized and assayed to target the 3CL protease. Though AG7088 is inactive (IC50 > 100 microM), the ketomethylene isosteres and tripeptide alpha,beta-unsaturated esters containing both P1 and P2 phenylalanine residues show modest inhibitory activity (IC50 = 11-39 microM). The Phe-Phe dipeptide inhibitors 18a-e are designed on the basis of computer modeling of the enzyme-inhibitor complex. The most potent inhibitor 18c with an inhibition constant of 0.52 microM is obtained by condensation of the Phe-Phe dipeptide alpha,beta-unsaturated ester with 4-(dimethylamino)cinnamic acid. The cell-based assays also indicate that 18c is a nontoxic anti-SARS agent with an EC50 value of 0.18 microM.