Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 25(115), p. 6494-6499, 2018

DOI: 10.1073/pnas.1721487115

Links

Tools

Export citation

Search in Google Scholar

Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Our study exploits time—the relatively unexplored fourth dimension of gene regulatory networks (GRNs)—to learn the temporal transcriptional logic underlying dynamic nitrogen (N) signaling in plants. We introduce several conceptual innovations to the analysis of time-series data in the area of predictive GRNs. Our resulting network now provides the “transcriptional logic” for transcription factor perturbations aimed at improving N-use efficiency, an important issue for global food production in marginal soils and for sustainable agriculture. More broadly, the combination of the time-based approaches we develop and deploy can be applied to uncover the temporal “transcriptional logic” for any response system in biology, agriculture, or medicine.