Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Proteomics, 8(15), p. 1356-1374, 2015

DOI: 10.1002/pmic.201400377

Links

Tools

Export citation

Search in Google Scholar

Open source libraries and frameworks for biological data visualisation: A guide for developers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent advances in high-throughput experimental techniques have led to an exponential increase in both the size and the complexity of the data sets commonly studied in biology. Data visualisation is increasingly used as the key to unlock this data, going from hypothesis generation to model evaluation and tool implementation. It is becoming more and more the heart of bioinformatics workflows, enabling scientists to reason and communicate more effectively. In parallel, there has been a corresponding trend towards the development of related software, which has triggered the maturation of different visualisation libraries and frameworks. For bioinformaticians, scientific programmers and software developers, the main challenge is to pick out the most fitting one(s) to create clear, meaningful and integrated data visualisation for their particular use cases. In this review, we introduce a collection of open source or free to use libraries and frameworks for creating data visualisation, covering the generation of a wide variety of charts and graphs. We will focus on software written in Java, JavaScript or Python. We truly believe this software offers the potential to turn tedious data into exciting visual stories.