Published in

IOP Publishing, Journal of Statistical Mechanics: Theory and Experiment, 5(2016), p. 054048, 2016

DOI: 10.1088/1742-5468/2016/05/054048

Links

Tools

Export citation

Search in Google Scholar

Localization model description of diffusion and structural relaxation in glass-forming Cu–Zr alloys

Journal article published in 2016 by Jack F. Douglas, Beatriz A. Pazmino Betancourt, Xuhang Tong, Hao Zhang ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We test the localization model (LM) prediction of a parameter-free relationship between the α-structural relaxation time τ α and the Debye–Waller factor 〈u 2 〉 for a series of simulated glass-forming Cu–Zr metallic liquids having a range of alloy compositions. After validating this relationship between the picosecond (‘fast’) and long-time relaxation dynamics over the full range of temperatures and alloy compositions investigated in our simulations, we show that it is also possible to estimate the self-diffusion coefficients of the individual atomic species (D Cu, D Zr) and the average diffusion coefficient D using the LM, in conjunction with the empirical fractional Stokes–Einstein (FSE) relation linking these diffusion coefficients to τ α . We further observe that the fragility and extent of decoupling between D and τ α strongly correlate with 〈u 2 〉 at the onset temperature of glass-formation T A where particle caging and the breakdown of Arrhenius relaxation first emerge.