Published in

American Association for Cancer Research, Molecular Cancer Therapeutics, 9(16), p. 1909-1921, 2017

DOI: 10.1158/1535-7163.mct-17-0022

Links

Tools

Export citation

Search in Google Scholar

A Novel Theranostic Strategy for MMP-14 –Expressing Glioblastomas Impacts Survival

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Glioblastoma (GBM) has a dismal prognosis. Evidence from preclinical tumor models and human trials indicates the role of GBM-initiating cells (GIC) in GBM drug resistance. Here, we propose a new treatment option with tumor enzyme-activatable, combined therapeutic and diagnostic (theranostic) nanoparticles, which caused specific toxicity against GBM tumor cells and GICs. The theranostic cross-linked iron oxide nanoparticles (CLIO) were conjugated to a highly potent vascular disrupting agent (ICT) and secured with a matrix-metalloproteinase (MMP-14) cleavable peptide. Treatment with CLIO-ICT disrupted tumor vasculature of MMP-14–expressing GBM, induced GIC apoptosis, and significantly impaired tumor growth. In addition, the iron core of CLIO-ICT enabled in vivo drug tracking with MR imaging. Treatment with CLIO-ICT plus temozolomide achieved tumor remission and significantly increased survival of human GBM-bearing mice by more than 2-fold compared with treatment with temozolomide alone. Thus, we present a novel therapeutic strategy with significant impact on survival and great potential for clinical translation. Mol Cancer Ther; 16(9); 1909–21. ©2017 AACR.