Published in

Oxford University Press, FEMS Microbiology Letters, 16(365), 2018

DOI: 10.1093/femsle/fny151

Links

Tools

Export citation

Search in Google Scholar

Molecular cloning, expression and biochemical characterization of periplasmic nitrate reductase from Campylobacter jejuni

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractCampylobacter jejuni, a human gastrointestinal pathogen, uses nitrate for growth under microaerophilic conditions using periplasmic nitrate reductase (Nap). The catalytic subunit, NapA, contains two prosthetic groups, an iron sulfur cluster and a molybdenum cofactor. Here we describe the cloning, expression, purification, and Michaelis-Menten kinetics (kcat of 5.91 ± 0.18 s−1 and a KM (nitrate) of 3.40 ± 0.44 μM) in solution using methyl viologen as an electron donor. The data suggest that the high affinity of NapA for nitrate could support growth of C. jejuni on nitrate in the gastrointestinal tract. Site-directed mutagenesis was used and the codon for the molybdenum coordinating cysteine residue has been exchanged for serine. The resulting variant NapA is 4-fold less active than the native enzyme confirming the importance of this residue. The properties of the C. jejuni enzyme reported here represent the first isolation and characterization of an epsilonproteobacterial NapA. Therefore, the fundamental knowledge of Nap has been expanded.