Published in

American Physiological Society, Physiological Genomics, 2(50), p. 104-116

DOI: 10.1152/physiolgenomics.00111.2017

Links

Tools

Export citation

Search in Google Scholar

Endothelial transcriptomics reveals activation of fibrosis-related pathways in hypertension

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hypertension poses a significant challenge to vasculature homeostasis and stands as the most common cardiovascular disease in the world. Its effects are especially profound on endothelial cells that form the inner lining of the vasculature and are directly exposed to the effects of excess pressure. Here, we characterize the in vivo transcriptomic response of cardiac endothelial cells to hypertension by rapidly isolating these cells from the spontaneous hypertension mouse model BPH/2J and its normotensive BPN/3J control strain and performing and RNA sequencing on both. Comparison of transcriptional differences between these groups reveals statistically significant changes in cellular pathways consistent with cardiac fibrosis found in hypertensive animals. Importantly, many of the fibrosis-linked genes identified also differ significantly between juvenile prehypertensive and adult hypertensive BPH/2J mice, suggesting that these transcriptional differences are hypertension related. We examined the dynamic nature of these transcriptional changes by testing whether blood pressure normalization using either a calcium channel blocker (amlodipine) or a angiotensin II receptor blocker (losartan) is able to reverse these expression patterns associated with hypertension. We find that blood pressure reduction is capable of reversing some gene-expression patterns, while other transcripts are recalcitrant to therapeutic intervention. This illuminates the possibility that unmanaged hypertension may irreversibly alter some endothelial transcriptional patterns despite later intervention. This study quantifies how endothelial cells are remodeled at the molecular level in cardiovascular pathology and advances our understanding of the transcriptional events associated with endothelial response to hypertensive challenge.