Published in

American Association of Immunologists, The Journal of Immunology, 3(200), p. 937-948, 2018

DOI: 10.4049/jimmunol.1701067

Links

Tools

Export citation

Search in Google Scholar

B Cell–Intrinsic MyD88 Signaling Promotes Initial Cell Proliferation and Differentiation To Enhance the Germinal Center Response to a Virus-like Particle

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Although TLR signaling in B cells has been implicated in the germinal center (GC) responses during viral infections and autoimmune diseases, the underlying mechanism is unclear. Bacterial phage Qβ-derived virus-like particle (Qβ-VLP) contains TLR ligands, which can enhance Qβ-VLP-induced Ab response, including GC response, through TLR/MyD88 signaling in B cells. In this study, by examining Ag-specific B cell response to Qβ-VLP, we found that lack of B cell MyD88 from the beginning of the immune response led to a more severe defect in the GC scale than abolishing MyD88 at later time points of the immune response. Consistently, B cell–intrinsic MyD88 signaling significantly enhanced the initial proliferation of Ag-specific B cells, which was accompanied with a dramatic increase of plasma cell generation and induction of Bcl-6+ GC B cell precursors. In addition, B cell–intrinsic MyD88 signaling promoted strong T-bet expression independent of IFN-γ and led to the preferential isotype switching to IgG2a/c. Thus, by promoting the initial Ag-specific B cell proliferation and differentiation, B cell–intrinsic MyD88 signaling enhanced both T-independent and T-dependent Ab responses elicited by Qβ-VLP. This finding will provide additional insight into the role of TLR signaling in antiviral immunity, autoimmune diseases, and vaccine design.