Published in

American Association for the Advancement of Science, Science, 6365(358), p. 893-896, 2017

DOI: 10.1126/science.aao7043

Links

Tools

Export citation

Search in Google Scholar

Photoionization in the time and frequency domain

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Resetting the clock on photoemission The ability to produce attosecond pulses of light provides access to some of the fastest electronic processes occurring within atoms. Tracking the temporal dynamics of the photoemission process in which an atom absorbs a high-energy photon and the electron escapes has exposed a discrepancy between the initial experimental findings and subsequent theoretical modeling. Isinger et al. present an ultrafast process that can account for and distinguish the different contributions to the photoemission processes in neon atoms. The findings reveal an “electron shake-up” process that may explain the discrepancy, bringing closure to a 7-year discussion. Science , this issue p. 893