Dissemin is shutting down on January 1st, 2025

Published in

Bentham Science Publishers, Current Proteomics, 2(16), p. 136-147, 2019

DOI: 10.2174/1570164615666180713110139

Links

Tools

Export citation

Search in Google Scholar

A Proteomic Analysis of Mitochondrial Complex III Inhibition in SH-SY5Y Human Neuroblastoma Cell Line

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background and Objective: Antimycin A (AntA) is a potent Electron Transport System (ETS) inhibitor exerting its effect through inhibiting the transfer of the electrons by binding to the quinone reduction site of the cytochrome bc1 complex (Complex III), which is known to be impaired in Huntington’s Disease (HD). The current studies were undertaken to investigate the effect of complex III inhibition in the SH-SY5Y cell line to delineate the molecular and cellular processes, which may play a role in the pathogenesis of HD.Methods:We treated SH-SY5Y neuroblastoma cells with AntA in order to establish an in vitro mitochondrial dysfunction model for HD. Differential proteome analysis was performed by the nLCMS/ MS system. Protein expression was assessed by western blot analysis.Results:Thirty five differentially expressed proteins as compared to the vehicle-treated controls were detected. Functional pathway analysis indicated that proteins involved in ubiquitin-proteasomal pathway were up-regulated in AntA-treated SH-SY5Y neuroblastoma cells and the ubiquitinated protein accumulation was confirmed by immunoblotting. We found that Prothymosin α (ProT α) was downregulated. Furthermore, we demonstrated that nuclear factor erythroid 2-related factor 2 (Nrf2) protein expression was co-regulated with ProT α expression, hence knockdown of ProT α in SH-SY5Y cells decreased Nrf2 protein level.Conclusion:Our findings suggest that complex III impairment might downregulate ubiquitinproteasome function and NRF2/Keap1 antioxidant response. In addition, it is likely that downregulation of Nrf2 is due to the decreased expression of ProT α in AntA-treated SH-SY5Y cells. Our results could advance the understanding of mechanisms involved in neurodegenerative diseases.