Published in

Wiley, Developmental Dynamics, 7(240), p. 1815-1825, 2011

DOI: 10.1002/dvdy.22667

Links

Tools

Export citation

Search in Google Scholar

The POU transcription factor UNC-86 controls the timing and ventral guidance of Caenorhabditis elegans axon growth

Journal article published in 2011 by Katherine Olsson-Carter, Frank J. Slack ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The in vivo mechanisms that coordinate the timing of axon growth and guidance are not well understood. In the Caenorhabditis elegans hermaphrodite specific neurons (HSNs), the lin-4 microRNA controls the stage of axon initiation independent of the UNC-40 and SAX-3 ventral guidance receptors. lin-4 loss-of-function mutants exhibit marked delays in axon outgrowth, while lin-4 overexpression leads to precocious growth in the L3 larval stage. Here, we show that loss of the POU transcription factor UNC-86 not only results in penetrant ventral axon growth defects in in the HSNs, but also causes processes to extend in the L1, three stages earlier than wild-type. This temporal shift is not dependent on UNC-40 or SAX-3, and does not require the presence of lin-4. We propose that unc-86(lf) HSN axons are misguided due to the temporal decoupling of axon initiation and ventral guidance responses.