Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-28912-x

Links

Tools

Export citation

Search in Google Scholar

Subcellular Imaging of Liquid Silicone Coated-Intestinal Epithelial Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSurface contamination and the formation of water bridge at the nanoscopic contact between an atomic force microscope tip and cell surface limits the maximum achievable spatial resolution on cells under ambient conditions. Structural information from fixed intestinal epithelial cell membrane is enhanced by fabricating a silicone liquid membrane that prevents ambient contaminants and accumulation of water at the interface between the cell membrane and the tip of an atomic force microscope. The clean and stable experimental platform permits the visualisation of the structure and orientation of microvilli present at the apical cell membrane under standard laboratory conditions together with registering topographical features within a microvillus. The method developed here can be implemented for preserving and imaging contaminant-free morphology of fixed cells which is central for both fundamental studies in cell biology and in the emerging field of digital pathology.