Published in

American Meteorological Society, Bulletin of the American Meteorological Society, 7(98), p. 1471-1484, 2017

DOI: 10.1175/bams-d-15-00194.1

Links

Tools

Export citation

Search in Google Scholar

Recent Advances in Satellite Data Rescue

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract To better understand the impacts of climate change, environmental monitoring capabilities must be enhanced by deploying additional and more accurate satellite- and ground-based (including in situ) sensors. In addition, reanalysis of observations collected decades ago but long forgotten can unlock precious information about the recent past. Historical, in situ observations mainly cover densely inhabited areas and frequently traveled routes. In contrast, large selections of early meteorological satellite data, waiting to be exploited today, provide information about remote areas unavailable from any other source. When initially collected, these satellite data posed great challenges to transmission and archiving facilities. As a result, data access was limited to the main teams of scientific investigators associated with the instruments. As archive media have aged, so have the mission scientists and other pioneers of satellite meteorology, who sometimes retired in possession of unique and unpublished information. This paper presents examples of recently recovered satellite data records, including satellite imagery, early infrared hyperspectral soundings, and early microwave humidity soundings. Their value for climate applications today can be realized using methods and techniques that were not yet available when the data were first collected, including efficient and accurate observation simulators and data assimilation into reanalyses. Modern technical infrastructure allows serving entire mission datasets online, enabling easy access and exploration by a broad range of users, including new and old generations of climate scientists.