Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Regulation of dietary fatty acid entrapment in subcutaneous adipose tissue and skeletal muscle.

Journal article published in 2002 by Kevin Evans, Gc C. Burdge ORCID, Sa A. Wootton ORCID, Ml L. Clark, Kn N. Frayn
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Using stable isotopic labeling of dietary fatty acids in conjunction with arteriovenous difference measurements, we have assessed the regulation of lipoprotein lipase-derived fatty acid entrapment in subcutaneous adipose tissue and forearm muscle in healthy subjects in the postprandial state. Eight volunteers fasted overnight and were then given a mixed meal containing [ 1-(13)C]palmitic acid and [1-(13)C]oleic acid. At baseline and for 6 h after the meal, blood samples were obtained from an arterialized hand vein and veins draining subcutaneous abdominal adipose tissue and forearm muscle, and arteriovenous differences were calculated. Entrapment of labeled fatty acids released by circulating triacylglycerol hydrolysis was close to 100% at 60 min, decreasing to 10-30% by 360 min. Entrapment of labeled fatty acids in forearm muscle was >100% and did not change with time. This study shows that entrapment of dietary fatty acids in adipose tissue in the postprandial period is a highly regulated process (varying with time) and that this can be studied in humans using stable isotope- labeled fatty acids in combination with measurement of appropriate arteriovenous differences. Also, fatty acid trapping in skeletal muscle is fundamentally different from that in adipose tissue, in that all the fatty acids released by lipoprotein lipase in skeletal muscle are taken up by the tissue.