Published in

BMJ Publishing Group, Annals of the Rheumatic Diseases, 3(77), p. 441-448, 2017

DOI: 10.1136/annrheumdis-2017-212285

Links

Tools

Export citation

Search in Google Scholar

Neuropsychiatric lupus or not? Cerebral hypoperfusion by perfusion-weighted MRI in normal-appearing white matter in primary neuropsychiatric lupus erythematosus

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ObjectivesCerebral perfusion abnormalities have been reported in systemic lupus erythematosus (SLE) but their value in distinguishing lupus from non-lupus-related neuropsychiatric events remains elusive. We examined whether dynamic susceptibility contrast-enhanced perfusion MRI (DSC-MRI), a minimally invasive and widely available method of cerebral perfusion assessment, may assist neuropsychiatric SLE (NPSLE) diagnosis.MethodsIn total, 76patients with SLE (37 primary NPSLE, 16 secondary NPSLE, 23 non-NPSLE) and 31 healthy controls underwent conventional MRI (cMRI) and DSC-MRI. Attribution of NPSLE to lupus or not was based on multidisciplinary assessment including cMRI results and response to treatment. Cerebral blood volume and flow were estimated in 18 normal-appearing white and deep grey matter areas.ResultsThe most common manifestations were mood disorder, cognitive disorder and headache. Patients with primary NPSLE had lower cerebral blood flow and volume in several normal-appearing white matter areas compared with controls (P<0.0001) and lower cerebral blood flow in the semioval centre bilaterally, compared with non-NPSLE and patients with secondary NPSLE (P<0.001). A cut-off for cerebral blood flow of 0.77 in the left semioval centre discriminated primary NPSLE from non-NPSLE/secondary NPSLE with 80% sensitivity and 67%–69% specificity. Blood flow values in the left semioval centre showed substantially higher sensitivity than cMRI (81% vs 19%–24%) for diagnosing primary NPSLE with the combination of the two modalities yielding 94%–100% specificity in discriminating primary from secondary NPSLE.ConclusionPrimary NPSLE is characterised by significant hypoperfusion in cerebral white matter that appears normal on cMRI. The combination of DSC-MRI-measured blood flow in the brain semioval centre with conventional MRI may improve NPSLE diagnosis.