Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-28795-y

Links

Tools

Export citation

Search in Google Scholar

VHL inactivation without hypoxia is sufficient to achieve genome hypermethylation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractVHL inactivation is a key oncogenic event for renal carcinomas. In normoxia, VHL suppresses HIF1a-mediated transcriptional response, which is characteristic to hypoxia. It has previously been shown that hypoxic conditions inhibit TET-dependent hydroxymethylation of cytosines and cause DNA hypermethylation at gene promoters. In this work, we performed VHL inactivation by CRISPR/Cas9 and studied its effects on gene expression and DNA methylation. We showed that even without hypoxia, VHL inactivation leads to hypermethylation of the genome. Hypermethylated cytosines were evenly distributed throughout the genome with a slight preference for AP-1 (JUN and FOS) binding sites. Hypermethylated cytosines tended to be enriched within the binding sites of transcription factors that showed increased gene expression after VHL inactivation. We also observed promoter hypermethylation associated with decreased gene expression for several regulators of transcription and DNA methylation including SALL3.