Published in

The Royal Society, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2126(376), p. 20170249, 2018

DOI: 10.1098/rsta.2017.0249

Links

Tools

Export citation

Search in Google Scholar

Continuous wavelet transform and higher-order spectrum: combinatory potentialities in breath sound analysis and electroencephalogram-based pain characterization

Journal article published in 2018 by Leontios J. Hadjileontiadis ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The combination of the continuous wavelet transform (CWT) with a higher-order spectrum (HOS) merges two worlds into one that conveys information regarding the non-stationarity, non-Gaussianity and nonlinearity of the systems and/or signals under examination. In the current work, the third-order spectrum (TOS), which is used to detect the nonlinearity and deviation from Gaussianity of two types of biomedical signals, that is, wheezes and electroencephalogram (EEG), is combined with the CWT to offer a time–scale representation of the examined signals. As a result, a CWT/TOS field is formed and a time axis is introduced, creating a time–bifrequency domain, which provides a new means for wheeze nonlinear analysis and dynamic EEG-based pain characterization. A detailed description and examples are provided and discussed to showcase the combinatory potential of CWT/TOS in the field of advanced signal processing. This article is part of the theme issue ‘Redundancy rules: the continuous wavelet transform comes of age’.