Published in

Copernicus Publications, Earth System Science Data, 4(10), p. 2123-2139, 2018

DOI: 10.5194/essd-10-2123-2018

Copernicus Publications, Earth System Science Data Discussions, p. 1-23

DOI: 10.5194/essd-2018-32

Links

Tools

Export citation

Search in Google Scholar

OCTOPUS: An Open Cosmogenic Isotope and Luminescence Database

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. We present a database of cosmogenic radionuclide and luminescence measurements in fluvial sediment. With support from the Australian National Data Service (ANDS) we have built infrastructure for hosting and maintaining the data at the University of Wollongong and making this available to the research community via an Open Geospatial Consortium (OGC)-compliant web service. The cosmogenic radionuclide (CRN) part of the database consists of 10Be and 26Al measurements in modern fluvial sediment samples from across the globe, along with ancillary geospatial vector and raster layers, including sample site, basin outline, digital elevation model, gradient raster, flow-direction and flow-accumulation rasters, atmospheric pressure raster, and CRN production scaling and topographic shielding factor rasters. Sample metadata are comprehensive and include all necessary information for the recalculation of denudation rates using CAIRN, an open-source program for calculating basin-wide denudation rates from 10Be and 26Al data. Further all data have been recalculated and harmonised using the same program. The luminescence part of the database consists of thermoluminescence (TL) and optically stimulated luminescence (OSL) measurements in fluvial sediment samples from stratigraphic sections and sediment cores from across the Australian continent and includes ancillary vector and raster geospatial data. The database can be interrogated and downloaded via a custom-built web map service. More advanced interrogation and exporting to various data formats, including the ESRI Shapefile and Google Earth's KML, is also possible via the Web Feature Service (WFS) capability running on the OCTOPUS server. Use of open standards also ensures that data layers are visible to other OGC-compliant data-sharing services. OCTOPUS and its associated data curation framework provide the opportunity for researchers to reuse previously published but otherwise unusable CRN and luminescence data. This delivers the potential to harness old but valuable data that would otherwise be lost to the research community. OCTOPUS can be accessed at https://earth.uow.edu.au (last access: 28 November 2018). The individual data collections can also be accessed via the following DOIs: https://doi.org/10.4225/48/5a8367feac9b2 (CRN International), https://doi.org/10.4225/48/5a836cdfac9b5 (CRN Australia), and https://doi.org/10.4225/48/5a836db1ac9b6 (OSL & TL Australia).