Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Applied Physics Letters, 23(108), p. 231902

DOI: 10.1063/1.4953349

Links

Tools

Export citation

Search in Google Scholar

Order-disorder transition in B-type Cu2ZnSnS4 and limitations of ordering through thermal treatments

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

B-type Cu2ZnSnS4 (CZTS) thin films with varying degrees of cation order were produced and examined with resonant Raman spectroscopy. Simulations based on Vineyard's theory of order allowed kinetic analysis of the final degree of order after the applied thermal treatments. Combining the results from the simulations and the resonant Raman spectra, the kinetic parameters within the Vineyard model for the order-disorder transition in B-type CZTS were determined, as well as a method which allows quantification of the degree of order based on resonant Raman spectra. The knowledge gained about the order-disorder transition in B-type CZTS allowed the prediction of a best practice thermal treatment for high ordering. This further leads to awareness about practical limits of thermal treatments regarding the cation ordering in B-type CZTS, and suggests that such treatments are not able to produce the high cation order necessary to sufficiently reduce detrimental potential fluctuations.