Dissemin is shutting down on January 1st, 2025

Published in

International Union of Crystallography, IUCrJ, 4(5), p. 497-509, 2018

DOI: 10.1107/s2052252518007467

Links

Tools

Export citation

Search in Google Scholar

Exploiting superspace to clarify vacancy and Al/Si ordering in mullite

Journal article published in 2018 by Paul Benjamin Klar ORCID, Iñigo Etxebarria ORCID, Gotzon Madariaga ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Synchrotron single-crystal X-ray diffraction has revealed diffuse scattering alongside sharp satellite reflections for different samples of mullite (Al4+2xSi2−2xO10−x). Structural models have been developed in (3+1)-dimensional superspace that account for vacancy ordering and Al/Si ordering based on harmonic modulation functions. A constraint scheme is presented which explains the crystal-chemical relationships between the split sites of the average structure. The modulation amplitudes of the refinements differ significantly by a factor of ∼3, which is explained in terms of different degrees of ordering,i.e.vacancies follow the same ordering principle in all samples but to different extents. A new approach is applied for the first time to determine Al/Si ordering by combining density functional theory with the modulated volumes of the tetrahedra. The presence of Si–Si diclusters indicates that the mineral classification of mullite needs to be reviewed. A description of the crystal structure of mullite must consider both the chemical composition and the degree of ordering. This is of particular importance for applications such as advanced ceramics, because the physical properties depend on the intrinsic structure of mullite.