Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Journal of Composite Materials, 3(53), p. 373-382, 2018

DOI: 10.1177/0021998318785701

Links

Tools

Export citation

Search in Google Scholar

Rare earth-doped lead titanate zirconate grown on carbon fibers by microwave-assisted hydrothermal synthesis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study aimed to develop a flexible carbon fiber/oxide layer coating composite with improved electrical properties for use in electronic devices. For this, lead titanate zirconate, cerium-doped lead titanate zirconate, and yttrium-doped lead titanate zirconate were grown on carbon fibers via microwaves-assisted hydrothermal synthesis. The performed synthesis presented advantages when compared to conventional routes used in nanoparticles obtention since it allows the morphological control even at low temperatures. Carbon fiber was selected as substrates due to their thermal stability, excellent mechanical properties, chemical characteristics that allow the creation of functional groups on their surface, and good microwave radiation absorption. The composites were investigated by X-ray diffraction, spectroscopy Raman, and field emission scanning electron microscopy. The electrochemical evaluations were made by four-point probe method, cyclic voltammetry, and electrochemical impedance spectroscopy. The syntheses were successful and the carbon fiber coated with lead zirconate titanate had promissory results, with a boost in the electrical conductivity and better capacitance behavior when compared to the undoped carbon fiber, showing to be a good alternative for applications in electrical devices.