Published in

American Meteorological Society, Journal of Climate, 21(29), p. 7723-7742, 2016

DOI: 10.1175/jcli-d-15-0798.1

Links

Tools

Export citation

Search in Google Scholar

Temperature–Salinity Structure of the North Atlantic Circulation and Associated Heat and Freshwater Transports

Journal article published in 2016 by Xiaobiao Xu ORCID, Peter B. Rhines, Eric P. Chassignet
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract This study investigates the circulation structure and relative contribution of circulation components to the time-mean meridional heat and freshwater transports in the North Atlantic, using numerical results of a high-resolution ocean model that are shown to be in excellent agreement with the observations. The North Atlantic circulation can be separated into the large-scale Atlantic meridional overturning circulation (AMOC) that is diapycnal and the subtropical and subpolar gyres that largely flow along isopycnal surfaces but also include prominent gyre-scale diapycnal overturning in the Subtropical Mode Water and Labrador Sea Water. Integrals of the meridional volume transport as a function of potential temperature θ and salinity S yield streamfunctions with respect to θ and to S, and heat functions. These argue for a significant contribution to the heat transport by the southward circulation of North Atlantic Deep Water. At 26.5°N, the isopycnic component of the subtropical gyre is colder and fresher in the northward-flowing western boundary currents than the southward return flows, and it carries heat southward and freshwater northward, opposite of that of the diapycnal component. When combined, the subtropical gyre contributes virtually zero to the heat transport and the AMOC is responsible for all the heat transport across this latitude. The subtropical gyre however significantly contributes to the freshwater transport, reducing the 0.5-Sv (1 Sv ≡ 106 m3 s–1) southward AMOC freshwater transport by 0.13 Sv. In the subpolar North Atlantic near 58°N, the diapycnal component of the circulation, or the transformation of warm saline upper Atlantic water into colder fresher deep waters, is responsible for essentially all of the heat and freshwater transports.