Published in

The Company of Biologists, Journal of Cell Science, 2017

DOI: 10.1242/jcs.192930

Links

Tools

Export citation

Search in Google Scholar

The focal adhesion targeting (FAT) domain of p130 Crk associated substrate (p130Cas) confers mechanosensing function

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The Cas family of focal adhesion proteins contain a highly conserved C-terminal focal adhesion targeting (FAT) domain. To determine the role of the FAT domain we compared wildtype exogenous NEDD9 with a hybrid construct in which the NEDD9 FAT domain is exchanged for the p130Cas FAT domain. Fluorescence recovery after photobleaching (FRAP) revealed significantly slowed exchange of the fusion protein at focal adhesions and significantly slower 2D migration. No differences were detected in cell stiffness measured with Atomic Force Microscopy (AFM) and cell adhesion forces measured with a magnetic tweezer device. Thus the slowed migration was not due to changes in cell stiffness or adhesion strength. Analysis of cell migration on surfaces of increasing rigidity revealed a striking reduction of cell motility in cells expressing the p130Cas FAT domain. The p130Cas FAT domain induced rigidity-dependent tyrosine phosphorylation of the NEDD9 substrate domain. This in turn reduced post-translational cleavage of NEDD9 which we show inhibits NEDD9-induced migration. Collectively, our data therefore suggest that the p130Cas FAT domain uniquely confers mechanosensing function.