Published in

Nature Research, Nature Chemical Biology, 10(8), p. 848-854, 2012

DOI: 10.1038/nchembio.1063

Links

Tools

Export citation

Search in Google Scholar

Global probabilistic annotation of metabolic networks enables enzyme discovery

Journal article published in 2012 by Germán Plata ORCID, Tobias Fuhrer, Tzu-Lin Hsiao, Uwe Sauer, Dennis Vitkup
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Annotation of organism-specific metabolic networks is one of the main challenges of systems biology. Importantly, due to inherent uncertainty of computational annotations, predictions of biochemical function need to be treated probabilistically. We present a global probabilistic approach to annotate genome-scale metabolic networks that integrates sequence homology and context-based correlations under a single principled framework. The developed method for Global Biochemical reconstruction Using Sampling (GLOBUS) not only provides annotation probabilities for each functional assignment, but also suggests likely alternative functions. GLOBUS is based on statistical Gibbs sampling of probable metabolic annotations and is able to make accurate functional assignments even in cases of remote sequence identity to known enzymes. We apply GLOBUS to genomes of Bacillus subtilis and Staphylococcus aureus, and validate the method predictions by experimentally demonstrating the 6-phosphogluconolactonase activity of ykgB and the role of the sps pathway for rhamnose biosynthesis in B. subtilis.