Published in

The Company of Biologists, Development, 2017

DOI: 10.1242/dev.150557

Links

Tools

Export citation

Search in Google Scholar

Multi-scale quantification of tissue behavior during amniote embryo axis elongation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Embryonic axis elongation is a complex multi-tissue morphogenetic process responsible for the formation of the posterior part of the amniote body. How movements and growth are coordinated between the different posterior tissues (e.g. neural tube, axial and paraxial mesoderm, lateral plate, ectoderm, endoderm) to drive axis morphogenesis remain largely unknown. Here, we use quail embryos to quantify cell behavior and tissue movements during elongation. We quantify the tissue-specific contribution to axis elongation by using 3D volumetric techniques, then quantify tissue-specific parameters such as cell density and proliferation. To study cell behavior at a multi-tissue scale, we used high-resolution 4D imaging of transgenic quail embryos expressing fluorescent proteins. We developed specific tracking and image analysis techniques to analyze cell motion and compute tissue deformations in 4D. This analysis reveals extensive sliding between tissues during axis extension. Further quantification of tissue tectonics showed patterns of rotations, contractions and expansions, which are coherent with the multi-tissue behavior observed previously. Our approach defines a quantitative and multiscale method to analyze the coordination between tissue behaviors during early vertebrate embryo morphogenetic events.