Dissemin is shutting down on January 1st, 2025

Published in

The Company of Biologists, Development, 2017

DOI: 10.1242/dev.148916

Links

Tools

Export citation

Search in Google Scholar

Ehmt2/G9a controls placental vascular maturation by activating the Notch pathway

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Defective fetoplacental vascular maturation causes intrauterine growth restriction (IUGR). A transcriptional switch initiates placental maturation where blood vessels elongate. However, cellular mechanisms and regulatory pathways involved are unknown. We show that the histone methyltransferase Ehmt2, also known as G9a, activates the Notch pathway to promote placental vascular maturation. Placental vasculature from embryos with G9a-deficient endothelial progenitor cells failed to expand due to decreased endothelial cell proliferation and increased trophoblast proliferation. Moreover, G9a deficiency altered the transcriptional switch initiating placental maturation and caused downregulation of Notch pathway effectors including Rbpj. Importantly, Notch pathway activation in G9a-deficient endothelial progenitors extended embryonic life and rescued placental vascular expansion. Thus, G9a activates the Notch pathway to balance endothelial cell and trophoblast proliferation and coordinates the transcriptional switch controlling placental vascular maturation. Accordingly, G9A and RBPJ were downregulated in human placentae from IUGR-affected pregnancies, suggesting that G9a is an important regulator in placental diseases caused by defective vascular maturation.