Published in

SAGE Publications, Journal of Composite Materials, 6(51), p. 783-795, 2016

DOI: 10.1177/0021998316655392

Links

Tools

Export citation

Search in Google Scholar

Hybrid silica micro and PDDA/nanoparticles-reinforced carbon fibre composites

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The work describes the manufacturing and testing of novel hybrid epoxy/carbon fibre composites with silica micro and poly-diallyldimethylammonium chloride-functionalised nanoparticles. A specific chemical dispersion procedure was applied using the poly-diallyldimethylammonium chloride to avoid clustering of the silica nanoparticles. The influence of the various manufacturing parameters, particles loading, and mechanical properties of the different phases has been investigated with a rigorous Design of Experiment technique based on a full factorial design (2131). Poly-diallyldimethylammonium chloride-functionalised silica nanoparticles were able to provide a homogenous dispersion, with a decrease of the apparent density and enhancement of the mechanical properties in the hybrid carbon fibre composites. Compared to undispersed carbon fibre composite laminates, the use of 2 wt% functionalised nanoparticles permitted to increase the flexural modulus by 47% and the flexural strength by 15%. The hybrid carbon fibre composites showed also an increase of the tensile modulus (9%) and tensile strength (5.6%).