Published in

American Association for Cancer Research, Cancer Immunology Research, 7(6), p. 835-847, 2018

DOI: 10.1158/2326-6066.cir-17-0408

Links

Tools

Export citation

Search in Google Scholar

Subcellular Localization of Antigen in Keratinocytes Dictates Delivery of CD4 + T-cell Help for the CTL Response upon Therapeutic DNA Vaccination into the Skin

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract In a mouse model of therapeutic DNA vaccination, we studied how the subcellular localization of vaccine protein impacts antigen delivery to professional antigen-presenting cells and efficiency of CTL priming. Cytosolic, membrane-bound, nuclear, and secretory versions of ZsGreen fluorescent protein, conjugated to MHC class I and II ovalbumin (OVA) epitopes, were expressed in keratinocytes by DNA vaccination into the skin. ZsGreen-OVA versions reached B cells in the skin-draining lymph node (dLN) that proved irrelevant for CTL priming. ZsGreen-OVA versions were also actively transported to the dLN by dendritic cells (DC). In the dLN, vaccine proteins localized to classical (c)DCs of the migratory XCR1+ and XCR− subtypes, and—to a lesser extent—to LN-resident cDCs. Secretory ZsGreen-OVA induced the best antitumor CTL response, even though its delivery to cDCs in the dLN was significantly less efficient than for other vaccine proteins. Secretory ZsGreen-OVA protein proved superior in CTL priming, because it led to in vivo engagement of antigen-loaded XCR1+, but not XCR1−, cDCs. Secretory ZsGreen-OVA also maximally solicited CD4+ T-cell help. The suboptimal CTL response to the other ZsGreen-OVA versions was improved by engaging costimulatory receptor CD27, which mimics CD4+ T-cell help. Thus, in therapeutic DNA vaccination into the skin, mere inclusion of helper epitopes does not ensure delivery of CD4+ T-cell help for the CTL response. Targeting of the vaccine protein to the secretory route of keratinocytes is required to engage XCR1+ cDC and CD4+ T-cell help and thus to promote CTL priming. Cancer Immunol Res; 6(7); 835–47. ©2018 AACR.