American Physiological Society, American Journal of Physiology - Gastrointestinal and Liver Physiology, 1(315), p. G1-G11
Full text: Unavailable
Gone are the days when enteric glial cells (EGC) were considered merely satellites of enteric neurons. Like their brain counterpart astrocytes, EGC express an impressive number of receptors for neurotransmitters and intercellular messengers, thereby contributing to neuroprotection and to the regulation of neuronal activity. EGC also produce different soluble factors that regulate neighboring cells, among which are intestinal epithelial cells. A better understanding of EGC response to an inflammatory environment, often referred to as enteric glial reactivity, could help define the physiological role of EGC and the importance of this reactivity in maintaining gut functions. In chronic inflammatory disorders of the gut such as Crohn’s disease (CD) and ulcerative colitis, EGC exhibit abnormal phenotypes, and their neighboring cells are dysfunctional; however, it remains unclear whether EGC are only passive bystanders or active players in the pathophysiology of both disorders. The aim of the present study is to review the physiological roles and properties of EGC, their response to inflammation, and their role in the regulation of the intestinal epithelial barrier and to discuss the emerging concept of CD as an enteric gliopathy.