Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Cretaceous Research, 5(30), p. 1247-1262

DOI: 10.1016/j.cretres.2009.06.006

Links

Tools

Export citation

Search in Google Scholar

Early Cretaceous (late Berriasian to early Aptian) palaeoceanographic change along the northwestern Tethyan margin (Vocontian Trough, southeastern France) : d13C, d18O and Sr-isotope belemnite and whole-rock records

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stable carbon, oxygen, and strontium isotope records were obtained from uppermost Hauterivian to lowermost Aptian belemnite rostra, which were collected in well-dated sections from the Vocontian Trough (southeastern France). This data set complements previously published belemnite-isotope records from the uppermost Berriasian-Hauterivian interval from the same basin. The belemnite carbon and oxygen isotope record is compared to the carbonate bulk-rock isotope record from the same sections, and from additional Italian sections. With regards to their long-term trends, both belemnite and whole-rock δ18O records are well correlated, except for the uppermost Hauterivian-lower Barremian interval, within which they deviate. This discrepancy is interpreted to be linked to the latest Hauterivian Faraoni oceanic anoxic event and its early Barremian aftermath. The Faraoni level is characterized by enhanced sea-water stratification, probably induced by the onset of a warmer and more humid climate along the northern Tethyan margin. The early Barremian was characterized by stronger vertical sea-water mixing reflected by a decrease in density contrast between sea-surface and deeper waters. The belemnite oxygen isotope record shows a more stable evolution with smaller fluctuations than its bulk-rock counterpart, which indicates that deeper water masses were not as much subjected to density fluctuations as sea-surface water. The comparison of belemnite and bulk-rock carbon isotope records allows observing the impact of regional influence exerted by platform carbonate ooze shedding on the carbon cycle. Discrepancies in the two records are observed during time of photozoan carbonate platform growth. The strontium isotopic record shows a gradual increase from the uppermost Berriasian to the uppermost lower Barremian followed by a rapid decrease until the uppermost Barremian and a renewed small increase within the lowermost Aptian. The major inflection point in the uppermost lower Barremian appears to predate the onset in the formation of the Ontong-Java volcanic plateau.