Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Chemistry - A European Journal, 21(15), p. 5327-5336, 2009

DOI: 10.1002/chem.200802305

Links

Tools

Export citation

Search in Google Scholar

Mapping Receptor Density on Live Cells by Using Fluorescence Correlation Spectroscopy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

生醫工程與環境科學系 ; ©2009 Wiley- Study of the density, spatial distribution, and molecular interactions of receptors on the cell membrane provides the knowledge required to understand cellular behavior and biological functions, as well as to discover, design, and screen novel therapeutic agents. However, the mapping of receptor distribution and the monitoring of ligand-receptor interactions on live cells in a spatially and temporally ordered manner are challenging tasks. In this paper, we apply fluorescence correlation spectroscopy (FCS) to map receptor densities on live cell membranes by introducing fluorescently marked aptamer molecules, which specifically bind to certain cell-surface receptors. The femtoliter-sized (0.4 fL) observation volume created by FCS allows fluorescent-aptamer detection down to 2 molecules and appears to be an ideal and highly sensitive biophysical tool for studying molecular interactions on live cells. Fluorophore-labeled aptamers were chosen for receptor recognition because of their high binding affinity and specificity. Aptamer sgc8, generated for specific cell recognition by a process called cell systematic evolution of ligands by exponential enrichment, was determined by FCS to have a binding affinity in the picomolar range (dissociation constant K-d = 790 +/- 150 pM) with its target membrane receptor, human protein tyrosine kinase-7 (PTK7), a potential cancer biomarker. We then constructed a cellular model and applied this aptamer-receptor interaction to estimate receptor densities and distributions on the cell surface. Specifically, different expression levels of PTK7 were Studied by using human leukemia CCRF-CEM cells (1300 +/- 190 receptors mu m(-2)) and HeLa cervical cancer cells (550 +/- 90 receptors mu m(-2)). Competition Studies with excess nonlabeled aptamers and proteinase treatment studies proved the validity of the density-estimation approach. With its intrinsic advantages of direct measurement, high sensitivity, fast analysis, and single-cell measurement, this FCS density-estimation approach holds potential for future applications in molecular-interaction studies and density estimations for subcellular structures and membrane receptors.