Dissemin is shutting down on January 1st, 2025

Published in

Karger Publishers, Developmental Neuroscience, 3-4(16), p. 212-221, 1994

DOI: 10.1159/000112109

Links

Tools

Export citation

Search in Google Scholar

Reactive Gliosis as a Consequence of Interleukin-6 Expression in the Brain - Studies in Transgenic Mice

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

生醫工程與環境科學系 ; ©1994 Karge - Gliosis is a characteristic pathologic state in many CNS disorders. Cytokines are considered to be effecters of gliosis. In order to explore the role of IL-6 in gliosis, the temporal and spatial expression of the IL-6 gene and its consequent effects on the brain were studied in a GFAP-IL6 transgenic mouse model. In GFAP-IL6 mice, IL-6 transgene expression was detectable in the brain at 1 week postnatally and increased to maximal levels by 3 months of age before declining at 8 and 12 months. Enhanced glial fibrillary acidic protein (GFAP) (marker for astrocytes) and Mac-I (marker for microglia) mRNA expression were first prominent at 1 month, increased to maximum levels by 3 months and remained significantly elevated through 12 months of age. Western blot analysis revealed that the enhanced GFAP mRNA expression in these transgenic mice was accompanied by increased GFAP protein levels. Immunostaining for Mac-I demonstrated that in addition to an increased staining intensity, the number of cells expressing the microglial/macrophage marker was also apparently increased, particularly in the cerebellum and brain stem. Concurrent with IL-6 transgene mRNA expression and reactive gliosis, upregulation of LL-1 alpha/beta, TNF alpha, ICAM-1 and EB22/5.3 (acute-phase reactant) but not inducible nitric oxide synthase gene expression was also observed. EB22/5.3 mRNA expression was most prominent and increased progressively with age. Expression of the IL-6, GFAP and EB22/5.3 RNAs was found to have similar distribution in the brain being found predominantly in the cerebellum, brain stem and sub-cortical regions. In conclusion, the constitutive expression of IL-6 in the brain induced the development of a pronounced and lifelong reactive gliosis affecting both astrocytes and microglia. The altered state of these cells may contribute to the functional and structural CNS impairment exhibited by the GFAP-IL6 mice. Finally, in these mice, expression of the EB22/5.3 gene correlated closely with the progression of neuropathy indicating that this acute-phase response gene was a good marker for and may be involved in the pathogenesis of CNS injury mediated by the expression of IL-6.