Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-17573-x

Links

Tools

Export citation

Search in Google Scholar

Small molecules related to adrenomedullin reduce tumor burden in a mouse model of colitis-associated colon cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTo investigate the contribution of adrenomedullin (AM) and its gene-related peptide, proadrenomedullin N-terminal 20 peptide (PAMP), to the progression and potential treatment of colon cancer we studied the effects of four small molecules (SM) related to AM and PAMP on a mouse model of colon cancer. For each SM, four experimental groups of male mice were used: (i) Control group; (ii) SM group; (iii) DSS group (injected with azoxymethane [AOM] and drank dextran sulfate sodium [DSS]); and (iv) DSS + SM group (treated with AOM, DSS, and the SM). None of the mice in groups i and ii developed tumors, whereas all mice in groups iii and iv developed colon neoplasias. No significant differences were found among mice treated with PAMP modulators (87877 and 106221). Mice that received the AM negative modulator, 16311, had worse colitis symptoms than their control counterparts, whereas mice injected with the AM positive modulator, 145425, had a lower number of tumors than their controls. SM 145425 regulated the expression of proliferation marker Lgr5 and had an impact on microbiota, preventing the DSS-elicited increase of the Bacteroides/Prevotella ratio. These results suggest that treatment with AM or with positive modulator SMs may represent a novel strategy for colon cancer.