Published in

Taylor and Francis Group, Plant Signaling & Behavior, 3(5), p. 258-260, 2010

DOI: 10.4161/psb.5.3.10551

Links

Tools

Export citation

Search in Google Scholar

Sterol biosynthesis in oomycete pathogens

Journal article published in 2010 by Elodie Gaulin ORCID, Arnaud Bottin, Bernard Dumas ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Oomycetes are a diverse group of filamentous eukaryotic microbes comprising devastating animal and plant pathogens. They share many characteristics with fungi, including polarized hyphal extension and production of spores, but phylogenetics studies have clearly placed oomycetes outside the fungal kingdom, in the kingdom Stramenopila which also includes marine organisms such as diatoms and brown algae. Oomycetes display various specific biochemical features, including sterol metabolism. Sterols are essential isoprenoid compounds involved in membrane function and hormone signaling. Oomycetes belonging to Peronosporales, such as Phytophthora sp., are unable to synthesize their own sterols and must acquire them from their plant or animal hosts. In contrast, a combination of biochemical and molecular approaches allowed us to decipher a nearly complete sterol biosynthetic pathway leading to fucosterol in the legume pathogen Aphanomyces euteiches, an oomycete belonging to Saprolegniales. Importantly, sterol demethylase, a key enzyme from this pathway, is susceptible to chemicals widely used in agriculture and medicine as antifungal drugs, suggesting that similar products could be used against plant and animal diseases caused by Saprolegniales.