Published in

American Institute of Physics, Applied Physics Letters, 4(104), p. 043106

DOI: 10.1063/1.4863538

Links

Tools

Export citation

Search in Google Scholar

High-frequency characterization of thermionic charge transport in silicon-on-insulator nanowire transistors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report on DC and microwave electrical transport measurements in silicon-on-insulator nano-transistors at low and room temperature. At low source-drain voltage, the DC current and radio frequency response show signs of conductance quantization. We attribute this to Coulomb blockade resulting from barriers formed at the spacer-gate interfaces. We show that at high bias transport occurs thermionically over the highest barrier: Transconductance traces obtained from microwave scattering-parameter measurements at liquid helium and room temperature are accurately fitted by a thermionic model. From the fits we deduce the ratio of gate capacitance and quantum capacitance, as well as the electron temperature.