Published in

International Union of Crystallography, Journal of Applied Crystallography, 3(51), p. 768-780, 2018

DOI: 10.1107/s160057671800479x

Links

Tools

Export citation

Search in Google Scholar

Small-angle neutron scattering measurements of δ-phase deuteride (hydride) precipitates in Zircaloy 4

Journal article published in 2018 by Brent J. Heuser, Jun-Li Lin, Changwoo Do ORCID, Lilin He ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Small-angle neutron scattering (SANS) measurements have been performed under ambient conditions to characterize deuteride (hydride) particles in Zircaloy 4, a fuel cladding material used in pressurized light-water nuclear reactors. Hydrogen pickup by the cladding leads to a rim structure in which large circumferential hydride plate-like particles preferentially form on the cooler water-side region of the cladding. Deuterium substitution has been used to increase the coherent response and decrease the incoherent background of the SANS measurements. Four bulk deuterium concentrations were investigated, approximately 100, 400, 500 and 1000 parts per million by weight (w.p.p.m.) deuterium, as well as a zero-deuterium-concentration reference sample. The net SANS response from the deuteride phase was determined at all concentration values after subtraction of the reference SANS response, which effectively subtracted the strong scattering from second-phase particles in as-received Zircaloy. The net SANS response consisted of strong Porod scattering from deuteride particles over the entire measured Q range (0.005–0.4 Å−1). The net SANS response was anisotropic at concentrations greater than 100 w.p.p.m. and required elliptical averaging analysis. A significant sample orientation effect on the intensity of the SANS response was observed, due to preferential alignment of deuteride particles. The effect of ex situ applied stress at elevated temperature on deuteride phase dissolution and reprecipitation was investigated; a weak effect was observed with SANS that could not be confirmed by optical microscopy.