Dissemin is shutting down on January 1st, 2025

Published in

Lippincott, Williams & Wilkins, Anesthesiology, 6(125), p. 1202-1218, 2016

DOI: 10.1097/aln.0000000000001360

Links

Tools

Export citation

Search in Google Scholar

Neurosteroid Allopregnanolone Suppresses Median Nerve Injury–induced Mechanical Hypersensitivity and Glial Extracellular Signal–regulated Kinase Activation through γ-Aminobutyric Acid Type A Receptor Modulation in the Rat Cuneate Nucleus:

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Mechanisms underlying neuropathic pain relief by the neurosteroid allopregnanolone remain uncertain. We investigated if allopregnanolone attenuates glial extracellular signal-regulated kinase (ERK) activation in the cuneate nucleus (CN) concomitant with neuropathic pain relief in median nerve chronic constriction injury (CCI) model rats. Methods We examined the time course and cellular localization of phosphorylated ERK (p-ERK) in CN after CCI. We subsequently employed microinjection of a mitogen-activated protein kinase kinase (ERK kinase) inhibitor, PD98059, to clarify the role of ERK phosphorylation in neuropathic pain development. Furthermore, we explored the effects of allopregnanolone (by mouth), intra-CN microinjection of γ-aminobutyric acid type A receptor antagonist (bicuculline) or γ-aminobutyric acid type B receptor antagonist (phaclofen) plus allopregnanolone, and allopregnanolone synthesis inhibitor (medroxyprogesterone; subcutaneous) on ERK activation and CCI-induced behavioral hypersensitivity. Results At 7 days post-CCI, p-ERK levels in ipsilateral CN were significantly increased and reached a peak. PD98059 microinjection into the CN 1 day after CCI dose-dependently attenuated injury-induced behavioral hypersensitivity (withdrawal threshold [mean ± SD], 7.4 ± 1.1, 8.7 ± 1.0, and 10.3 ± 0.8 g for 2.0, 2.5, and 3.0 mM PD98059, respectively, at 7 days post-CCI; n = 6 for each dose). Double immunofluorescence showed that p-ERK was localized to both astrocytes and microglia. Allopregnanolone significantly diminished CN p-ERK levels, glial activation, proinflammatory cytokines, and behavioral hypersensitivity after CCI. Bicuculline, but not phaclofen, blocked all effects of allopregnanolone. Medroxyprogesterone treatment reduced endogenous CN allopregnanolone and exacerbated nerve injury-induced neuropathic pain. Conclusions Median nerve injury-induced CN glial ERK activation modulated the development of behavioral hypersensitivity. Allopregnanolone attenuated glial ERK activation and neuropathic pain via γ-aminobutyric acid type A receptors. Reduced endogenous CN allopregnanolone after medroxyprogesterone administration rendered rats more susceptible to CCI-induced neuropathy.