Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-09997-2

Links

Tools

Export citation

Search in Google Scholar

Vacancies, disorder-induced smearing of the electronic structure, and its implications for the superconductivity of anti-perovskite MgC0.93Ni2.85

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe anti-perovskite superconductor MgC0.93Ni2.85 was studied using high-resolution x-ray Compton scattering combined with electronic structure calculations. Compton scattering measurements were used to determine experimentally a Fermi surface that showed good agreement with that of our supercell calculations, establishing the presence of the predicted hole and electron Fermi surface sheets. Our calculations indicate that the Fermi surface is smeared by the disorder due to the presence of vacancies on the C and Ni sites, but does not drastically change shape. The 20% reduction in the Fermi level density-of-states would lead to a significant (~70%) suppression of the superconducting T c for pair-forming electron-phonon coupling. However, we ascribe the observed much smaller T c reduction at our composition (compared to the stoichiometric compound) to the suppression of pair-breaking spin fluctuations.