Dissemin is shutting down on January 1st, 2025

Published in

The Royal Society, Philosophical Transactions of the Royal Society B: Biological Sciences, 1712(372), p. 20160036, 2017

DOI: 10.1098/rstb.2016.0036

Links

Tools

Export citation

Search in Google Scholar

Harvest-induced evolution: insights from aquatic and terrestrial systems

Journal article published in 2016 by Anna Kuparinen ORCID, Marco Festa-Bianchet
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Commercial and recreational harvests create selection pressures for fitness-related phenotypic traits that are partly under genetic control. Consequently, harvesting can drive evolution in targeted traits. However, the quantification of harvest-induced evolutionary life history and phenotypic changes is challenging, because both density-dependent feedback and environmental changes may also affect these changes through phenotypic plasticity. Here, we synthesize current knowledge and uncertainties on six key points: (i) whether or not harvest-induced evolution is happening, (ii) whether or not it is beneficial, (iii) how it shapes biological systems, (iv) how it could be avoided, (v) its importance relative to other drivers of phenotypic changes, and (vi) whether or not it should be explicitly accounted for in management. We do this by reviewing findings from aquatic systems exposed to fishing and terrestrial systems targeted by hunting. Evidence from aquatic systems emphasizes evolutionary effects on age and size at maturity, while in terrestrial systems changes are seen in weapon size and date of parturition. We suggest that while harvest-induced evolution is likely to occur and negatively affect populations, the rate of evolutionary changes and their ecological implications can be managed efficiently by simply reducing harvest intensity. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences'.