Published in

Massachusetts Institute of Technology Press, The Journal of Cognitive Neuroscience, 8(30), p. 1119-1129, 2018

DOI: 10.1162/jocn_a_01283

Links

Tools

Export citation

Search in Google Scholar

Spatial Attention Enhances the Neural Representation of Invisible Signals Embedded in Noise

Journal article published in 2017 by Cooper A. Smout ORCID, Jason B. Mattingley
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Recent evidence suggests that voluntary spatial attention can affect neural processing of visual stimuli that do not enter conscious awareness (i.e., invisible stimuli), supporting the notion that attention and awareness are dissociable processes [Wyart, V., Dehaene, S., & Tallon-Baudry, C. Early dissociation between neural signatures of endogenous spatial attention and perceptual awareness during visual masking. Frontiers in Human Neuroscience, 6, 1–14, 2012; Watanabe, M., Cheng, K., Murayama, Y., Ueno, K., Asamizuya, T., Tanaka, K., et al. Attention but not awareness modulates the BOLD signal in the human V1 during binocular suppression. Science, 334, 829–831, 2011]. To date, however, no study has demonstrated that these effects reflect enhancement of the neural representation of invisible stimuli per se, as opposed to other neural processes not specifically tied to the stimulus in question. In addition, it remains unclear whether spatial attention can modulate neural representations of invisible stimuli in direct competition with highly salient and visible stimuli. Here we developed a novel EEG frequency-tagging paradigm to obtain a continuous readout of human brain activity associated with visible and invisible signals embedded in dynamic noise. Participants ( n = 23) detected occasional contrast changes in one of two flickering image streams on either side of fixation. Each image stream contained a visible or invisible signal embedded in every second noise image, the visibility of which was titrated and checked using a two-interval forced-choice detection task. Steady-state visual-evoked potentials were computed from EEG data at the signal and noise frequencies of interest. Cluster-based permutation analyses revealed significant neural responses to both visible and invisible signals across posterior scalp electrodes. Control analyses revealed that these responses did not reflect a subharmonic response to noise stimuli. In line with previous findings, spatial attention increased the neural representation of visible signals. Crucially, spatial attention also increased the neural representation of invisible signals. As such, the present results replicate and extend previous studies by demonstrating that attention can modulate the neural representation of invisible signals that are in direct competition with highly salient masking stimuli.