Published in

American Geophysical Union, Geochemistry, Geophysics, Geosystems, 5(16), p. 1307-1323

DOI: 10.1002/2015gc005737

Links

Tools

Export citation

Search in Google Scholar

Estimates of future warming-induced methane emissions from hydrate offshore west Svalbard for a range of climate models

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Methane hydrate close to the hydrate stability limit in seafloor sediment could represent an important source of methane to the oceans and atmosphere as the oceans warm. We investigate the extent to which patterns of past and future ocean-temperature fluctuations influence hydrate stability in a region offshore West Svalbard where active gas venting has been observed. We model the transient behavior of the gas hydrate stability zone at 400-500 m water depth (mwd) in response to past temperature changes inferred from historical measurements and proxy data and we model future changes predicted by seven climate models and two climate-forcing scenarios (Representative Concentration Pathways RCPs 2.6 and 8.5). We show that over the past 2000 yr, a combination of annual and decadal temperature fluctuations could have triggered multiple hydrate-sourced methane emissions from seabed shallower than 400 mwd during episodes when the multi-decadal average temperature was similar to that over the last century (∼2.6°C). These temperature fluctuations can explain current methane emissions at 400 mwd, but decades to centuries of ocean warming are required to generate emissions in water deeper than 420 m. In the venting area, future methane emissions are relatively insensitive to the choice of climate model and RCP scenario until 2050 yr, but are more sensitive to the RCP scenario after 2050 yr. By 2100 CE, we estimate an ocean uptake of 97-1050 TgC from marine Arctic hydrate-sourced methane emissions, which is 0.06-0.67% of the ocean uptake from anthropogenic CO2 emissions for the period 1750-2011. This article is protected by copyright. All rights reserved.