Published in

International Union of Crystallography, Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 9(68), p. 1116-1119, 2012

DOI: 10.1107/s1744309112033088

Links

Tools

Export citation

Search in Google Scholar

Crystallization and preliminary X-ray characterization of a type III cohesin–dockerin complex from the cellulosome system ofRuminococcus flavefaciens

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In Ruminococcus flavefaciens, a predominant fibre-degrading bacterium found in ruminants, cellulosomal proteins are anchored to the bacterial cell wall through a relatively small ScaE scaffoldin which includes a single type III cohesin. The cotton-binding protein CttA consists of two cellulose-binding modules and a C-terminal modular pair (XDoc) comprising an X-module and a contiguous dockerin, which exhibits high affinity towards the ScaE cohesin. Seleno-L-methionine-labelled derivatives of the ScaE cohesin module and the XDoc from CttA have been expressed, copurified and cocrystallized. The crystals belonged to the tetragonal space group P4(3)2(1)2, with unit-cell parameters a = b = 78.7, c = 203.4 Å, and the unit cell contains a single cohesin-XDoc complex in the asymmetric unit. The diffraction data were phased to 2.0 Å resolution using the anomalous signal of the Se atoms.