Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, Retrovirology, S2(8), 2011

DOI: 10.1186/1742-4690-8-s2-o42

BioMed Central, Retrovirology, 1(8), 2011

DOI: 10.1186/1742-4690-8-87

Links

Tools

Export citation

Search in Google Scholar

Mapping of positive selection sites in the HIV-1 genome in the context of RNA and protein structural constraints.

Journal article published in 2011 by Joke Snoeck, Jacques Fellay, Daniel C. Douek, Amalio Telenti, István Bartha ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The HIV-1 genome is subject to pressures that target the virus resulting in escape and adaptation. On the other hand, there is a requirement for sequence conservation because of functional and structural constraints. Mapping the sites of selective pressure and conservation on the viral genome generates a reference for understanding the limits to viral escape, and can serve as a template for the discovery of sites of genetic conflict with known or unknown host proteins. Results To build a thorough evolutionary, functional and structural map of the HIV-1 genome, complete subtype B sequences were obtained from the Los Alamos database. We mapped sites under positive selective pressure, amino acid conservation, protein and RNA structure, overlapping coding frames, CD8 T cell, CD4 T cell and antibody epitopes, and sites enriched in AG and AA dinucleotide motives. Globally, 33% of amino acid positions were found to be variable and 12% of the genome was under positive selection. Because interrelated constraining and diversifying forces shape the viral genome, we included the variables from both classes of pressure in a multivariate model to predict conservation or positive selection: structured RNA and α-helix domains independently predicted conservation while CD4 T cell and antibody epitopes were associated with positive selection. Conclusions The global map of the viral genome contains positive selected sites that are not in canonical CD8 T cell, CD4 T cell or antibody epitopes; thus, it identifies a class of residues that may be targeted by other host selective pressures. Overall, RNA structure represents the strongest determinant of HIV-1 conservation. These data can inform the combined analysis of host and viral genetic information.