Published in

arXiv, 2019

DOI: 10.48550/arxiv.1904.04529

Springer, Journal of Materials Research, 9(32), p. 1760-1769, 2017

DOI: 10.1557/jmr.2017.121

Links

Tools

Export citation

Search in Google Scholar

Monotonic and cyclic mechanical reliability of metallization lines on polymer substrates

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Mechanical stability of Ag and Cu printed and evaporated metallization lines on polymer substrates is investigated by means of monotonic tensile and cyclic bending tests. It is shown that lines which demonstrate good performance during monotonic tests fail at lower strains during a cyclic bending tests. Evaporated lines with the grain size of several hundreds of nanometers have good ductility and consequently good stability during monotonic loading but at the same time they fail at low strains during cyclic bending. Printed lines with nanocrystalline microstructure, in contrast, demonstrate more intensive cracking during monotonic loading but higher failure strains during cyclic bending. Apart from the grain size effect, the effect of film thickness on the saturation crack density after cyclic bending is also demonstrated. Thinner films have higher crack density in accordance with the shear lag model.