National Academy of Sciences, Proceedings of the National Academy of Sciences, 2(115), 2017
Full text: Download
Significance The TRPV1 channel is an important detector of noxious heat, yet the location of the heat sensor and the mechanism of heat activation remain poorly understood. Here we used structure-based engineering between the heat-activated TRPV1 channel and the Shaker Kv channel to demonstrate that transplantation of the pore domain of TRPV1 into Shaker gives rise to functional channels that can be activated by a TRPV1-selective tarantula toxin and by noxious heat, demonstrating that the pore of TRPV1 contains the structural elements sufficient for activation by temperature.