Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 2(115), 2017

DOI: 10.1073/pnas.1717192115

Links

Tools

Export citation

Search in Google Scholar

Heat activation is intrinsic to the pore domain of TRPV1

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance The TRPV1 channel is an important detector of noxious heat, yet the location of the heat sensor and the mechanism of heat activation remain poorly understood. Here we used structure-based engineering between the heat-activated TRPV1 channel and the Shaker Kv channel to demonstrate that transplantation of the pore domain of TRPV1 into Shaker gives rise to functional channels that can be activated by a TRPV1-selective tarantula toxin and by noxious heat, demonstrating that the pore of TRPV1 contains the structural elements sufficient for activation by temperature.