Published in

The Royal Society, Philosophical Transactions of the Royal Society B: Biological Sciences, 1498(363), p. 1819-1827, 2008

DOI: 10.1098/rstb.2007.0033

Links

Tools

Export citation

Search in Google Scholar

The changing Amazon forest

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Long-term monitoring of distributed, multiple plots is the key to quantify macroecological patterns and changes. Here we examine the evidence for concerted changes in the structure, dynamics and composition of old-growth Amazonian forests in the late twentieth century. In the 1980s and 1990s, mature forests gained biomass and underwent accelerated growth and dynamics, all consistent with a widespread, long-acting stimulation of growth. Because growth on average exceeded mortality, intact Amazonian forests have been a carbon sink. In the late twentieth century, biomass of trees of more than 10 cm diameter increased by 0.62±0.23 t C ha −1 yr −1 averaged across the basin. This implies a carbon sink in Neotropical old-growth forest of at least 0.49±0.18 Pg C yr −1 . If other biomass and necromass components are also increased proportionally, then the old-growth forest sink here has been 0.79±0.29 Pg C yr −1 , even before allowing for any gains in soil carbon stocks. This is approximately equal to the carbon emissions to the atmosphere by Amazon deforestation. There is also evidence for recent changes in Amazon biodiversity. In the future, the growth response of remaining old-growth mature Amazon forests will saturate, and these ecosystems may switch from sink to source driven by higher respiration (temperature), higher mortality (as outputs equilibrate to the growth inputs and periodic drought) or compositional change (disturbances). Any switch from carbon sink to source would have profound implications for global climate, biodiversity and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions among millions of species.