Published in

De Gruyter Open, Nanophotonics, 6(7), p. 1069-1094, 2018

DOI: 10.1515/nanoph-2017-0132

Links

Tools

Export citation

Search in Google Scholar

Bianisotropic metasurfaces: physics and applications

Journal article published in 2018 by Viktar S. Asadchy ORCID, Ana Díaz-Rubio ORCID, Sergei A. Tretyakov
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMetasurfaces as optically thin composite layers can be modeled as electric and magnetic surface current sheets flowing in the layer volume in the metasurface plane. In the most general linear metasurface, the electric surface current can be induced by both incident electric and magnetic fields. Likewise, magnetic polarization and magnetic current can be induced also by external electric field. Metasurfaces which exhibit magnetoelectric coupling are called bianisotropic metasurfaces. In this review, we explain the role of bianisotropic properties in realizing various metasurface devices and overview the state-of-the-art of research in this field. Interestingly, engineered bianisotropic response is seen to be required for realization of many key field transformations, such as anomalous refraction, asymmetric reflection, polarization transformation, isolation, and more. Moreover, we summarize previously reported findings on uniform and gradient bianisotropic metasurfaces and envision novel and prospective research directions in this field.