Links

Tools

Export citation

Search in Google Scholar

'Sticky electrodes' for the detection of silver nanoparticles.

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Detection and quantification of nanoparticles in environmental systems is a task that requires reliable and affordable analytical methods. Here an approach using a cysteine-modified 'sticky' glassy carbon electrode is presented. The electrode is immersed in a silver nanoparticle containing electrolyte and left in this suspension without an applied potential, i.e. under open circuit condition, for a variable amount of time. The amount of silver nanoparticles immobilized on the electrode within this sticking time is then determined by oxidative stripping, yielding the anodic charge and thus the amount of Ag nanoparticles sticking to the electrode surface. When using a cysteine-modified glassy carbon electrode, significant and reproducible amounts of silver nanoparticles stick to the surface, which is not the case for unmodified glassy carbon surfaces. Additionally, proof-of-concept experiments are performed on real seawater samples. These demonstrate that also under simulated environmental conditions an increased immobilization and hence improved detection of silver nanoparticles on cysteine-modified glassy carbon electrodes is achieved, while no inhibitive interference with this complex matrix is observed.