Dissemin is shutting down on January 1st, 2025

Published in

Future Medicine, Nanomedicine, 3(12), p. 185-193, 2017

DOI: 10.2217/nnm-2016-0340

Links

Tools

Export citation

Search in Google Scholar

Healing efficacy of fracture-targeted GSK3β inhibitor-loaded micelles for improved fracture repair

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aim: To evaluate the fracture healing capabilities of a GSK3β inhibitor, 6-bromoindirubin-3′-oxime, coupled with an aspartic acid octapeptide in a micellar delivery system. Materials & methods: The efficacy of the intravenously administered micelles to accelerate healing of femoral fracture in mice was evaluated. Micro-computed tomography analysis was employed to obtain bone density, total volume, relative volume, trabecular thickness and trabecular spacing.Results: Both fracture bone mineral density and volume were significantly higher in the micelle treatment groups when compared with controls. The fracture-targeted micelle demonstrates fracture-specific bone anabolism and biocompatibility in off-target tissues. Conclusion: Accelerated fracture healing in mice was achieved by targeting the GSK3β inhibitor, 6-bromoindirubin-3′-oxime, to the fracture site.