Published in

The Company of Biologists, Biology Open, 2018

DOI: 10.1242/bio.032656

Links

Tools

Export citation

Search in Google Scholar

Embryonic bone morphogenetic protein and nodal induce invasion in melanocytes and melanoma cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Despite recent progress in melanoma therapy via inhibition of activated oncogenes or immune stimulation, most stage IV melanoma patients still have limited survival times. Both therapeutic approaches eventually fail to prevent further invasion and metastasis, which is driven by a morphological process termed epithelial-mesenchymal transition (EMT). We previously demonstrated that inhibition of EMT in melanoma cells via antagonizing the bone morphogenetic protein (BMP)-pathway abrogated EMT and neural crest migration of melanoma cells in the chick embryo.Here, we show that BMP-2 is highly expressed in invasive melanoma cells and is elevated in the serum of stage IV melanoma patients compared to stage IB-IIC patients and healthy controls. Highly BMP-2-expressing melanoma cells display enhanced invasion in the rhombencephalon of the chick embryo. In addition to driving neural crest migration in the zebrafish embryo, the agonists BMP-2, BMP-7 and nodal induce EMT/invasion in radial growth phase melanoma cells and in human melanocytes in skin reconstructs. Blocking either BMP or nodal-signaling by antagonists (noggin, lefty) or the Alk4/5/7-receptor inhibitor SB431542 decreases EMT and invasion of melanoma cells in human epidermal skin reconstructs. Together, our data suggest that inhibition of EMT-inducing pathways in melanoma might be a therapeutic approach to attenuate melanoma cell invasiveness.